Nicotine Attenuates Activation of Tissue Resident Macrophages in the Mouse Stomach through the β2 Nicotinic Acetylcholine Receptor

نویسندگان

  • Andrea Nemethova
  • Klaus Michel
  • Pedro J. Gomez-Pinilla
  • Guy E. Boeckxstaens
  • Michael Schemann
چکیده

BACKGROUND The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. METHODS Calcium transients ([Ca(2+)]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. RESULTS In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+)]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. CONCLUSION This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of the vagus nerve attenuates macrophage activity by activating the JAK- 2-STAT-3 signaling pathway

Acetylcholine released by efferent vagus nerves inhibits macrophage activation. Here we show that the anti-inflammatory action of nicotinic receptor activation in peritoneal macrophages was associated with activation of the transcription factor STAT3. STAT3 was phosphorylated by the tyrosine kinase Jak2 that was recruited to the alpha7 subunit of the nicotinic acetylcholine receptor. The anti-i...

متن کامل

Selective re-expression of β2 nicotinic acetylcholine receptor subunits in the ventral tegmental area of the mouse restores intravenous nicotine self-administration.

Beta-2 (β2) nicotinic acetylcholine receptor subunits have been particularly related with nicotine reinforcement. However, the importance of these subunits in the chronic aspects of nicotine addiction has not been established. In this study we evaluated the role of ventral tegmental area (VTA) β2 receptor subunits in the acquisition and maintenance of nicotine self-administration. We used an op...

متن کامل

Increased nicotinic acetylcholine receptor protein underlies chronic nicotine-induced up-regulation of nicotinic agonist binding sites in mouse brain.

Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the i...

متن کامل

The (α4)3(β2)2 Stoichiometry of the Nicotinic Acetylcholine Receptor Predominates in the Rat Motor Cortex.

The α4β2 nicotinic acetylcholine receptor (nAChR) is important in central nervous system physiology and in mediating several of the pharmacological effects of nicotine on cognition, attention, and affective states. It is also the likely receptor that mediates nicotine addiction. This receptor assembles in two distinct stoichiometries: (α4)2(β2)3 and (α4)3(β2)2, which are referred to as high-sen...

متن کامل

Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices

Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013